
git beginner cheat sheet
This is an introductory git cheat sheet targeting beginner-level git
users. With the commands shown here, you will be able to start
tracking the history of your projects. There is certainly a lot more you
can do with git (and a lot cleaner), but the important thing is to get you
started and to provide a reference for infrequent git users. Once you
are comfortable with these basic commands (and you don’t need this cheat
sheet to remember them), you are advised to use the cheat sheet for
advanced users (not finished yet).

command line usage
The command line git application uses so-called commands. The
command line syntax is always:

git command [arguments]

Each command has an extensive manual with lots of examples:

git help command

setup
configure your identity
git config --global user.name 'Jane Doe'
git config --global user.email 'jane.doe@feminism.org'

show colors
git config --global color.ui auto

configure aliases
git config --global alias.unstage 'reset HEAD --'
git config --global alias.lol 'log --graph --decorate --oneline --all'

basics

create repositories
These are the two ways how to create a local git repository you can work
with:

create empty repository
git init project-name

create local copy of existing repository
git clone https://github.com/user/project-name.git

Then you can start editing files.

status
show what to do with files in working directory
git status

the staging area
git has a so-called staging area. The staging area is used to iteratively
accumulate changes for the next version.

working directory
(changes not staged for commit)

staging area
(changes to be committed)

git stage file git unstage file

repository
(tracked content)

git commit

There are some other commands that let you work with the files in your
working directory:

discard changes to a file
git restore file

rename a file
git mv source destination

remove a file
git rm file

show changes
show changes from last commit and staging area to current working copy
git diff

show contents of staging area
(i.e. changes from last commit to staging area)
git diff --staged

commit changes
opens editor for you to edit commit message
git commit

commits with a short message
git commit --message 'short commit message'

More about commit message conventions here.

view history
Commits are named by their SHA-1 hash. They are often abbreviated for
readability. A commit always points to its parent.

main

topic/feature

ebe0262

03f4f8d

62a0ee9

8b29f74

7f295dd

show all commits and their messages
git log

also show the full diff like in git diff
git log --patch

shows condensed view of history, only commit message subjects
git lol

branches and merging

branches
The default branch is called main. The main branch contains the current
version of the project. Other branches are used e.g. to develop a feature or
to resolve an issue. The goal is to do this without influencing the
development in main.

https://idiv-biodiversity.github.io/git-knowledge-base/commit-message-conventions.html
https://en.wikipedia.org/wiki/SHA-1

show your local branches
git branch

show all branches (remotes, too)
git branch --all

create a new branch
git branch topic/feature

switch to a branch
git switch topic/feature

More about branch naming conventions here.

merging
To resolve a branch, i.e. to include its changes in the main branch, you
need to merge it:

git switch main
git merge topic/feature

main

topic/feature

A

B

C

M

F2

F1

The so-called merge commits have two parents.

remotes
Add and show remotes:

show remotes
git remote --verbose

add remote
git remote add name url

Fetch latest status of remotes:

fetch only the 'origin' remote
git fetch origin

fetch all remotes
git fetch --all

Hint: Use git lol after fetching to find out what happened!

solo
The workflow is very simple when you don’t have contributors. Your main
remote, which you use for push and pull without any arguments, is called
origin.

origin

local

main

main

git fetch git pull git push

contributor
The remote of the original author / maintainer is called upstream. You
notify the maintainer via requests using the GitHub or GitLab web
interfaces, depending where the project is hosted.

origin

local

upstream

main

main

git pull

main

pull request (GitHub)
merge request (GitLab)

git push git pull upstream main

maintainer
The remotes of contributors are usually named by their owners.

origin

local

alice bob

main

main

git pull git push

main

git pull alice

main

git pull bob

https://idiv-biodiversity.github.io/git-knowledge-base/branch-naming-conventions.html

	git beginner cheat sheet
	command line usage
	setup

	basics
	create repositories
	status
	the staging area
	show changes
	commit changes
	view history

	branches and merging
	branches
	merging

	remotes
	solo
	contributor
	maintainer

