In this exercise you will run the DIspersal-Extinction-Cladogenesis model using the BioGeoBEARS R package.

Library setup

library(tidyverse)
library(ape)
library(geiger)
library(optimx)  # You need to have some version of optimx available
library(FD)  # for FD::maxent() (make sure this is up-to-date)
library(snow)  # (if you want to use multicore functionality; some systems/R versions prefer library(parallel), try either)
library(parallel)
library(devtools)
library(rexpokit)
library(cladoRcpp)
library(BioGeoBEARS)
library(stringr)
library(RColorBrewer)
library(colorspace)
library(jpeg)
library(viridis)

Tutorial

This script is mostly absed on the example script by the developer of BioGeoBEARS, available at http://phylo.wikidot.com/biogeobears.

Prepare the tree file

If your tree is in nexus format, you need to convert it to newick format, otherwise you can jus specify the file apth

# specify the tree file
trfn <- "example_data/bombacoideae_phylogeny.newick"
tr <- read.tree(trfn)

Define the grography file

geogfn <- "example_data/bombacoideae_biome_classification.txt"

# Look at your geographic range data:
tipranges = getranges_from_LagrangePHYLIP(lgdata_fn = geogfn)

Set up the DEC model

BioGeoBEARS_run_object = define_BioGeoBEARS_run()

# set the macimum number of areas. If you ahve many areas, you can set the
# amximum number of areas a species can occur in simultaneously. One
# possibility is to set this to the number of areas of the most widespread
# recent species.
max_range_size = 5
numstates_from_numareas(numareas = 5, maxareas = 5, include_null_range = TRUE)

# Set some operators for the default DEC model

BioGeoBEARS_run_object$trfn = trfn
BioGeoBEARS_run_object$geogfn = geogfn
BioGeoBEARS_run_object$max_range_size = max_range_size
BioGeoBEARS_run_object$min_branchlength = 1e-06
BioGeoBEARS_run_object$include_null_range = TRUE
BioGeoBEARS_run_object$speedup = TRUE  #
BioGeoBEARS_run_object$use_optimx = "GenSA"  # if FALSE, use optim() instead of optimx()
BioGeoBEARS_run_object$num_cores_to_use = 4
BioGeoBEARS_run_object$force_sparse = FALSE
BioGeoBEARS_run_object = readfiles_BioGeoBEARS_run(BioGeoBEARS_run_object)
BioGeoBEARS_run_object$return_condlikes_table = TRUE
BioGeoBEARS_run_object$calc_TTL_loglike_from_condlikes_table = TRUE
BioGeoBEARS_run_object$calc_ancprobs = TRUE  # get ancestral states from optim run
runslow = TRUE

Define the output path

resfn = "example_data/bombacoideae_DEC_results.Rdata"

Check if the the input is alright

check_BioGeoBEARS_run(BioGeoBEARS_run_object)

Run the DEC model

resDEC = bears_optim_run(BioGeoBEARS_run_object)

Save outputs to disk

# Save the result file
save(resDEC, file = resfn)

# Save the node states for visualization
resDEC$ML_marginal_prob_each_state_at_branch_top_AT_node
trtable = prt(tr, printflag = FALSE)
areas = getareas_from_tipranges_object(tipranges)
states_list_0based = rcpp_areas_list_to_states_list(areas = areas, maxareas = max_range_size, 
    include_null_range = TRUE)

# Make the list of ranges
ranges_list = NULL
for (i in 1:length(states_list_0based)) {
    if ((length(states_list_0based[[i]]) == 1) && (is.na(states_list_0based[[i]]))) {
        tmprange = "_"
    } else {
        tmprange = paste(areas[states_list_0based[[i]] + 1], collapse = "")
    }
    ranges_list = c(ranges_list, tmprange)
}

range_probabilities = as.data.frame(resDEC$ML_marginal_prob_each_state_at_branch_top_AT_node)
row.names(range_probabilities) = trtable$node
names(range_probabilities) = ranges_list

# Write the table to a tab-delimited text file (for Excel etc.)
write.table(range_probabilities, file = "example_data/bombacoideae_DEC_node_probabilities.txt", 
    row.names = F, quote = FALSE, sep = "\t")

Visualization


analysis_titletxt = "BioGeoBEARS DEC"

# Setup
results_object = resDEC
scriptdir = np(system.file("extdata/a_scripts", package = "BioGeoBEARS"))

# A plot of ancestral states
res2 = plot_BioGeoBEARS_results(results_object, analysis_titletxt, addl_params = list("j"), 
    plotwhat = "text", label.offset = 2, tipcex = 0.7, statecex = 0.6, splitcex = 0.6, 
    titlecex = 0.8, plotsplits = F, cornercoords_loc = scriptdir, include_null_range = TRUE, 
    tr = tr, tipranges = tipranges, plotlegend = T)

# showing pie charts for each node with the probabilities
plot_BioGeoBEARS_results(results_object, analysis_titletxt, addl_params = list("j"), 
    plotwhat = "pie", label.offset = 2, tipcex = 0.7, statecex = 0.7, splitcex = 0.6, 
    titlecex = 0.8, plotsplits = F, cornercoords_loc = scriptdir, include_null_range = TRUE, 
    tr = tr, tipranges = tipranges)

Done!